Rapid phase retrieval of ultrashort pulses from dispersion scan traces using deep neural networks

verfasst von
Sven Kleinert, Ayhan Tajalli, Tamas Nagy, Uwe Morgner
Abstract

The knowledge of the temporal shape of femtosecond pulses is of major interest for all their applications. The reconstruction of the temporal shape of these pulses is an inverse problem for characterization techniques, which benefit from an inherent redundancy in the measurement. Conventionally, time-consuming optimization algorithms are used to solve the inverse problems. Here, we demonstrate the reconstruction of ultrashort pulses from dispersion scan traces employing a deep neural network. The network is trained with a multitude of artificial and noisy dispersion scan traces from randomly shaped pulses. The retrieval takes only 16 ms enabling video-rate reconstructions. This approach reveals a great tolerance against noisy conditions, delivering reliable retrievals from traces with signal-to-noise ratios down to 5.

Organisationseinheit(en)
Institut für Quantenoptik
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Externe Organisation(en)
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Laser Zentrum Hannover e.V. (LZH)
Typ
Artikel
Journal
Optics Letters
Band
44
Seiten
979-982
Anzahl der Seiten
4
ISSN
0146-9592
Publikationsdatum
15.02.2019
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Atom- und Molekularphysik sowie Optik
Elektronische Version(en)
https://doi.org/10.1364/ol.44.000979 (Zugang: Geschlossen)