A Versatile Route to Assemble Semiconductor Nanoparticles into Functional Aerogels by Means of Trivalent Cations
- verfasst von
- Dániel Zámbó, Anja Schlosser, Pascal Rusch, Franziska Lübkemann, Julian Koch, Herbert Pfnür, Nadja C Bigall
- Abstract
3D nanoparticle assemblies offer a unique platform to enhance and extend the functionality and optical/electrical properties of individual nanoparticles. Especially, a self-supported, voluminous, and porous macroscopic material built up from interconnected semiconductor nanoparticles provides new possibilities in the field of sensing, optoelectronics, and photovoltaics. Herein, a method is demonstrated for assembling semiconductor nanoparticle systems containing building blocks possessing different composition, size, shape, and surface ligands. The method is based on the controlled destabilization of the particles triggered by trivalent cations (Y3+ , Yb3+ , and Al3+ ). The effect of the cations is investigated via X-ray photoelectron spectroscopy. The macroscopic, self-supported aerogels consist of the hyperbranched network of interconnected CdSe/CdS dot-in-rods, or CdSe/CdS as well as CdSe/CdTe core-crown nanoplatelets is used to demonstrate the versatility of the procedure. The non-oxidative assembly method takes place at room temperature without thermal activation in several hours and preserves the shape and the fluorescence of the building blocks. The assembled nanoparticle network provides longer exciton lifetimes with retained photoluminescence quantum yields, that make these nanostructured materials a perfect platform for novel multifunctional 3D networks in sensing. Various sets of photoelectrochemical measurements on the interconnected semiconductor nanorod structures also reveal the enhanced charge carrier separation.
- Organisationseinheit(en)
-
Institut für Physikalische Chemie und Elektrochemie
AG Katalyse und Membranen
Institut für Festkörperphysik
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
- Typ
- Artikel
- Journal
- Small
- Band
- 16
- Anzahl der Seiten
- 12
- ISSN
- 1613-6810
- Publikationsdatum
- 23.04.2020
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Chemie (insg.), Werkstoffwissenschaften (insg.), Biotechnologie, Biomaterialien
- Elektronische Version(en)
-
https://doi.org/10.1002/smll.201906934 (Zugang:
Offen)