Studying the role of nonlinear medium thickness in the characterization of 1.5-cycle pulses using XPW dispersion scan

verfasst von
Ayhan Tajalli, Marie Ouillé, Aline Vernier, Frederik Böhle, Esmerando Escoto, Sven Kleinert, Rosa Romero, Janos Csontos, Uwe Morgner, Günter Steinmeyer, Helder Crespo, Rodrigo Lopez-Martens, Tamas Nagy
Abstract

When light sources approach the single cycle limit, both their dispersion compensation as well as pulse characterization become increasingly challenging. As all pulse characterization methods rely on some optical nonlinearity, concomitant phase matching issues or dispersive broadening inside the nonlinear medium may severely corrupt the measurement result. One of the best suited methods for characterizing sub-2-cycle pulses is the dispersion scan (d-scan) technique that traditionally relies on second harmonic generation (SHG) as the nonlinear interaction [1]. However, using frequency conversion as a nonlinearity phase matching is the dominant limitation obscuring smaller propagation effects. By using cross-polarized wave (XPW) generation [2] in the d-scan arrangement [3], where no frequency conversion takes place, the phase matching issues are eliminated, uncovering the dispersion and self-phase modulation (SPM), inherently present in the propagation.

Organisationseinheit(en)
Institut für Quantenoptik
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Hannoversches Zentrum für Optische Technologien (HOT)
Externe Organisation(en)
Universität Paris-Saclay
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Sphere Ultrafast Photonics
ELI-HU Nonprofit Kft.
Laser Zentrum Hannover e.V. (LZH)
Universidade do Porto
Typ
Aufsatz in Konferenzband
Publikationsdatum
2019
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Spektroskopie, Elektronische, optische und magnetische Materialien, Instrumentierung, Atom- und Molekularphysik sowie Optik, Computernetzwerke und -kommunikation
Elektronische Version(en)
https://doi.org/10.1109/CLEOE-EQEC.2019.8872833 (Zugang: Geschlossen)