Recursion Formulas for Integrated Products of Jacobi Polynomials

verfasst von
Sven Beuchler, Tim Haubold, Veronika Pillwein
Abstract

From the literature it is known that orthogonal polynomials as the Jacobi polynomials can be expressed by hypergeometric series. In this paper, the authors derive several contiguous relations for terminating multivariate hypergeometric series. With these contiguous relations one can prove several recursion formulas of those series. This theoretical result allows to compute integrals over products of Jacobi polynomials in a very efficient recursive way. Moreover, the authors present an application to numerical analysis where it can be used in algorithms which compute the approximate solution of boundary value problem of partial differential equations by means of the finite elements method. With the aid of the contiguous relations, the approximate solution can be computed much faster than using numerical integration. A numerical example illustrates this effect.

Organisationseinheit(en)
Institut für Angewandte Mathematik
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Externe Organisation(en)
Johannes Kepler Universität Linz (JKU)
Typ
Artikel
Journal
Constructive approximation
Band
59
Seiten
583-618
Anzahl der Seiten
36
ISSN
0176-4276
Publikationsdatum
06.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Analysis, Mathematik (insg.), Computational Mathematics
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2105.08989 (Zugang: Offen)
https://doi.org/10.1007/s00365-023-09655-z (Zugang: Offen)