Ultrahigh carrier mobility, Dirac cone and high stretchability in pyrenyl and pyrazinoquinoxaline graphdiyne/graphyne nanosheets confirmed by first-principles
- verfasst von
- Fazel Shojaei, Bohayra Mortazavi
- Abstract
Graphdiyne nanomaterials are low density and highly porous carbon-based two-dimensional (2D) materials, with outstanding application prospects for electronic and energy storage/conversion systems. In two latest scientific advances, large-area pyrenyl graphdiyne (Pyr-GDY) and pyrazinoquinoxaline graphdiyne (PQ-GDY) nanosheets have been successfully fabricated. As the first theoretical study, herein we conduct first-principles simulations to explore the stability and electronic, optical and mechanical properties of Pyr-GDY, N-Pyr-GDY, PQ-GDY and N-Pyr-GYN monolayers. We particularly examine the intrinsic properties of PQ-graphyne (PQ-GYN) and Pyr-graphyne (Pyr-GYN) monolayers. Acquired results confirm desirable dynamical and thermal stability and high mechanical strength of these novel nanosheets, owing to their strong covalent networks. We show that Pyr-based lattices can show high stretchability. Analysis of optical results also confirm the suitability of Pyr- and PQ-GDY/GYN nanosheets to adsorb in the near-IR, visible, and UV range of light. Notably, PQ-GDY is found to exhibit distorted Dirac cone and highly anisotropic fermi velocities. First-principles results reveal ultrahigh carrier mobilities along the considered nanoporous nanomembranes, particularly PQ-GYN monolayer is predicted to outperform phosphorene and MoS2. Acquired results introduce pyrenyl and pyrazinoquinoxaline graphyne/graphyne as promising candidates to design novel nanoelectronics and energy storage/conversion systems.
- Organisationseinheit(en)
-
Institut für Photonik
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
- Externe Organisation(en)
-
Persian Gulf University
- Typ
- Artikel
- Journal
- Applied surface science
- Band
- 557
- ISSN
- 0169-4332
- Publikationsdatum
- 15.08.2021
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Allgemeine Chemie, Physik der kondensierten Materie, Allgemeine Physik und Astronomie, Oberflächen und Grenzflächen, Oberflächen, Beschichtungen und Folien
- Elektronische Version(en)
-
https://arxiv.org/abs/2104.02365 (Zugang:
Offen)
https://doi.org/10.1016/j.apsusc.2021.149699 (Zugang: Geschlossen)