„Es ist uns gelungen, die Größe der Lichtquelle um einen Faktor von mehr als 1.000 zu verkleinern, was Reproduzierbarkeit, verbesserte Stabilität der Lichtquelle und Skalierbarkeit erlaubt. Diese Charakteristiken ermöglichen den Einsatz der Quellen in praktischen Anwendungen wie zum Beispiel photonischen Quantenprozessoren“, sagt Prof. Dr. Michael Kues, Leiter des Instituts für Photonik und Vorstandsmitglied des Exzellenzclusters PhoenixD der Leibniz Universität Hannover.
Quantenbits (Qubits) sind die Grundbausteine von Quantencomputern und dem Quanteninternet und können aus den von der Quantenlichtquelle erzeugten Lichtquanten (Photononen) erstellt werden. Für die Verarbeitung von solchen optischen Quantenzuständen hat sich die sogenannte „integrierte Photonik“ in den vergangenen Jahren zur führenden Plattform entwickelt. Dabei wird Licht durch extrem kompakte Strukturen auf den Chip gelenkt, was für den Aufbau von photonischen Quantenrechensystemen genutzt wird. Diese sind heute schon cloud-basiert zugänglich. Skalierbar aufgebaut können diese sodann Aufgaben lösen, an denen konventionelle Rechner aufgrund ihrer beschränkten Rechenkapazitäten scheitern. Diese Überlegenheit wird als Quantenvorteil bezeichnet.
„Bislang benötigten Quantenlichtquellen externe, sperrige Lasersysteme, welche deren Feldeinsatz einschränkte. Diesen Nachteil der Technologie haben wir mit unserem neuartigen Chip-Design und durch die Nutzung verschiedener integrierter Plattformen überwunden“, sagt Hatam Mahmudlu, Doktorand in Kues‘ Team. Ihre Neuentwicklung, eine elektrisch angeregte, laserintegrierte photonische Quantenlichtquelle, passt komplett auf einen Chip und kann frequenzverschränkte Qubit-Zustände emittieren.
„Qubits sind sehr anfällig für Rauschen. Deswegen muss der Chip von einem Laserfeld angetrieben werden, das mittels eines integrierten Filters völlig rauschfrei ist. Bislang war es unmöglich, Laser, Filter und Resonator auf demselben Chip zu integrieren, da sich kein Material alleinig für die Herstellung dieser verschiedenen Komponenten eignete“, sagt Dr. Raktim Haldar, Humboldt-Stipendiat in Kues' Gruppe. Die Forschenden setzten deswegen auf eine „Hybridtechnologie“, die den Laser aus Indiumphosphid und einen Filter aus Siliziumnitrid auf einem einzigen Chip zusammenführt. Auf dem Chip werden in einem spontanen nichtlinearen Prozess zwei Photonen von einem Laserfeld erzeugt. Jedes Photon besteht gleichzeitig aus einer Reihe von Farben, was als „Superposition" bezeichnet wird, und die Farben beider Photonen sind miteinander korreliert, d. h. die Photonen sind verschränkt und können Quanteninformationen speichern. „Wir erreichen bemerkenswerte Effizienzen und Zustandsqualitäten, um in Quantencomputern oder dem Quanteninternet Anwendung zu finden“, sagt Kues.
„Jetzt können wir den Laser zusammen mit anderen Komponenten auf einem Chip integrieren, so dass die gesamte Quantenquelle kleiner als eine Ein-Euro-Münze ist. Unser winziges Gerät könnte als ein Schritt in Richtung eines Quantenvorteils auf einem Chip mit Photonen betrachtet werden. Im Gegensatz zu Google, das derzeit superkalte Qubits in kryogenen Systemen verwendet, könnte der Quantenvorteil mit solchen photonischen Systemen auf einem Chip sogar bei Raumtemperatur erreicht werden“, sagt Haldar. Außerdem erwarten die Wissenschaftler, dass ihre Entdeckung dazu beitragen wird, die Produktionskosten von Anwendungen zu senken. „Wir können uns vorstellen, dass unsere Quantenlichtquelle bald ein elementarer Bestandteil von programmierbaren photonischen Quantenprozessoren sein wird“, sagt Kues.
Die Ergebnisse sind in der Fachzeitschrift Nature Photonics veröffentlicht.
Prof. Dr. Michael Kues ist Leiter des Instituts für Photonik und Vorstandsmitglied des Exzellenzclusters PhoenixD: Photonics, Optics, and Engineering - Innovation across Disciplines an der Leibniz Universität Hannover, Deutschland. Der Forschungscluster PhoenixD umfasst rund 120 Wissenschaftlerinnen und Wissenschaftler, die an neuartigen integrierten Optiken arbeiten. PhoenixD wird von 2019 bis 2025 mit rund 52 Millionen Euro von der Deutschen Forschungsgemeinschaft (DFG) gefördert. Dr. Raktim Haldar ist Alexander von Humboldt-Forschungsstipendiat am Institut für Photonik. Hatam Mahmudlu ist Doktorand in Kues‘ Team. Die Forschung wurde vom Bundesministerium für Bildung und Forschung (BMBF) und dem Europäischen Forschungsrat (ERC) gefördert.
Originalartikel:
Hatam Mahmudlu, Robert Johanning, Albert van Rees, Anahita Khodadad Kashi, Jörn P. Epping, Raktim Haldar, Klaus-J. Boller, und Michael Kues
Fully on-chip photonic turnkey quantum source for entangled qubit/qudit state generation
Nature Photonics, (2023)
https://doi.org/10.1038/s41566-023-01193-1
Hinweis für die Redaktion:
Für weitere Informationen kontaktieren Sie bitte Prof. Dr. Michael Kues
(Telefon +49 511 762 3539, E-Mail: michael.kues@iop.uni-hannover.de) und
besuchen Sie www.iop.uni-hannover.de und www.phoenixd.uni-hannover.de.
------------------
Ein Pressefoto des Teams in Druckauflösung können Sie hier herunterladen.
Bildunterschrift: Sie haben die neue integrierte Quantenlichtquelle entwickelt (von links): Prof. Dr. Michael Kues, Leiter des Instituts für Photonik und Vorstandsmitglied des Exzellenzclusters PhoenixD der Leibniz Universität Hannover, mit Doktorand Hatam Mahmudlu und Humboldt-Postdoc Dr. Raktim Haldar.
Copyrightangabe: Sonja Smalian/PhoenixD
Eine Illustration des Chips können Sie hier für Ihre redaktionelle Berichterstattung herunterladen.
Bildunterschrift: Illustrative Darstellung der chip-integrierten Quantenlichtquelle zur Erzeugung verschränkter Photonen. Copyrightangabe: Raktim Haldar/Michael Kues
Eine Detailaufnahme des Chips können Sie hier für Ihre redaktionelle Berichterstattung herunterladen.
Bildunterschrift: Die ganze Quantenlichtquelle passt auf einen Chip, der kleiner als eine Ein-Euro-Münze ist. Die Verkleinerung der Lichtquelle um einen Faktor von mehr als 1.000 gelang den Forschenden durch den Einsatz einer neuartigen „Hybridtechnologie“, der den Laser aus Indiumphosphid und einen Filter aus Siliziumnitrid auf einem einzigen Chip zusammenführt. Die neue Lichtquelle ist effizient und stabil, und kann in Quantencomputern oder dem Quanteninternet Anwendung finden. Copyright: IOP
Für weitere Informationen steht Ihnen Mechtild Freiin v. Münchhausen, Pressesprecherin der Leibniz Universität Hannover und Leiterin des Referats für Kommunikation und Marketing, unter Telefon +49 511 762 5342 oder per E-Mail unter kommunikation@zuv.uni-hannover.de gern zur Verfügung
Das Team des Referats für Kommunikation und Marketing der Lebniz Universität Hannover erreichen Sie hier.