PhoenixD Forschung
Publikationen

Publikationen im Rahmen des Exzellenzclusters PhoenixD

Die Forschungsleistung des Exzellenzclusters PhoenixD zeigt sich in den zahlreichen Publikationen, die seit 2019 veröffentlicht wurden. Eine kontinuierlich aktualisierte Übersicht finden Sie auf dieser Seite. In externen Publikationsportalen können Sie nach Veröffentlichungen mit der Identifikationsnummer (Project-ID) 390833453 und dem Kürzel EXC-2122 suchen.

Zeige Ergebnisse 301 - 320 von 879

2022


Bühre, L. V., Bullerdiek, S., Trinke, P., Bensmann, B., Deutsch, A. L. E. R., Behrens, P., & Hanke-Rauschenbach, R. (2022). Application and Analysis of a Salt Bridge Reference Electrode Setup for PEM Water Electrolysis: Towards an Extended Voltage Loss Break Down. Journal of the Electrochemical Society, 169(12), Artikel 124513. https://doi.org/10.1149/1945-7111/ac9ee1
Calà Lesina, A., & Ramunno, L. (2022). Workshop in Computational Nanophotonics. In Light-Matter Interactions Towards the Nanoscale (S. 43-57). (NATO Science for Peace and Security Series B: Physics and Biophysics). Springer Science and Business Media B.V.. https://doi.org/10.1007/978-94-024-2138-5_3
Chazette, L., Brunotte, W., & Speith, T. (2022). Explainable Software Systems: From Requirements Analysis to System Evaluation. Requirements Engineering, 27(4), 457-487. https://doi.org/10.1007/s00766-022-00393-5
Chichkov, B. (2022). Laser printing: trends and perspectives. Applied Physics A: Materials Science and Processing, 128(11), Artikel 1015. https://doi.org/10.1007/s00339-022-06158-9
Christ, H. A., Ang, P. Y., Li, F., Johannes, H. H., Kowalsky, W., & Menzel, H. (2022). Production of highly aligned microfiber bundles from polymethyl methacrylate via stable jet electrospinning for organic solid-state lasers. Journal of Polymer Science, 60(4), 715-725. https://doi.org/10.1002/pol.20210747
Cihan, M., Hudobivnik, B., Korelc, J., & Wriggers, P. (2022). A virtual element method for 3D contact problems with non-conforming meshes. Computer Methods in Applied Mechanics and Engineering, 402, Artikel 115385. https://doi.org/10.1016/j.cma.2022.115385
Dai, Z., Wolf, A., Ley, P. P., Glück, T., Sundermeier, M. C., & Lachmayer, R. (2022). Requirements for Automotive LiDAR Systems. Sensors, 22(19), Artikel 7532. https://doi.org/10.3390/s22197532
Doll-Nikutta, K., Winkel, A., Yang, I., Grote, A. J., Meier, N., Habib, M., Menzel, H., Behrens, P., & Stiesch, M. (2022). Adhesion Forces of Oral Bacteria to Titanium and the Correlation with Biophysical Cellular Characteristics. Bioengineering, 9(10), Artikel 567. https://doi.org/10.3390/bioengineering9100567
Evertz, A., Reitz, B., Olsen, E., Wetzel, U., Ghane-Mothlagh, R., Sengünes, I., Döhrmann, S., Seyfried, M., Oppermann, A., Tolle, N., & Overmeyer, L. (2022). Fast ethernet operation of a printed optical transmission path using industrial integration technologies. In R. T. Chen, & H. Schroder (Hrsg.), Optical Interconnects XXII Artikel 120070C (Proceedings of SPIE - The International Society for Optical Engineering; Band 12007). SPIE. https://doi.org/10.1117/12.2609554
Faustmann, M., Melenk, J. M., & Parvizi, M. (2022). Caccioppoli-type estimates and H -matrix approximations to inverses for FEM-BEM couplings. Numerische Mathematik, 150(3), 849-892. https://doi.org/10.48550/arXiv.2008.11498, https://doi.org/10.1007/s00211-021-01261-0
Faustmann, M., Melenk, J. M., & Parvizi, M. (2022). H -matrix approximability of inverses of FEM matrices for the time-harmonic Maxwell equations. Advances in Computational Mathematics, 48(5), Artikel 59. https://doi.org/10.48550/arXiv.2103.14981, https://doi.org/10.1007/s10444-022-09965-z
Fedorov Kukk, A., Wu, D., Gaffal, E., Panzer, R., Emmert, S., & Roth, B. (2022). Multimodal system for optical biopsy of melanoma with integrated ultrasound, optical coherence tomography and Raman spectroscopy. Journal of Biophotonics, 15(10), Artikel e202200129. https://doi.org/10.1002/jbio.202200129
Fedorov Kukk, A., Blumenröther, E., & Roth, B. (2022). Self-made transparent optoacoustic detector for measurement of skin lesion thickness in vivo. Biomedical Physics and Engineering Express, 8(3), Artikel 035029. https://doi.org/10.1088/2057-1976/ac669b
Fricke, S., Caspary, R., Castillo, S., & Magnor, M. (2022). Adaptive Gaussian Points for Faster and Better Computer-Generated Holograms. In Digital Holography and Three-Dimensional Imaging, DH 2022 Artikel W3A.4 (Optics InfoBase Conference Papers). Optica Publishing Group (formerly OSA). https://doi.org/10.1364/DH.2022.W3A.4
Fricke, S., Caspary, R., Castillo, S., & Magnor, M. (2022). GPU-Accelerated Point-Based Holograms. In Frontiers in Optics + Laser Science: FiO 2022 Artikel JW4B.53 (Technical Digest Series; Nr. paper JW4B.53). Optica Publishing Group (formerly OSA). https://doi.org/10.1364/FIO.2022.JW4B.53
Fröhlich, S., Liu, X., Hamdou, A., Meunier, A., Hussain, M., Carole, M., Kaassamani, S., Froidevaux, M., Lavoute, L., Gaponov, D., Ducros, N., Février, S., Zeitoun, P., Kovacev, M., Fajardo, M., Boutu, W., Gauthier, D., & Merdji, H. (2022). Self-probed ptychography from semiconductor high-harmonic generation. Optics letters, 47(19), 4865-4868. https://doi.org/10.48550/arXiv.2206.08333, https://doi.org/10.1364/OL.471113
Godin, T., Sader, L., Khodadad Kashi, A., Hanzard, P. H., Hideur, A., Moss, D. J., Morandotti, R., Genty, G., Dudley, J. M., Pasquazi, A., Kues, M., & Wetzel, B. (2022). Recent advances on time-stretch dispersive Fourier transform and its applications. Advances in Physics: X, 7(1), Artikel 2067487. https://doi.org/10.1080/23746149.2022.2067487
Graf, R. T., Schlosser, A., Zámbó, D., Schlenkrich, J., Rusch, P., Chatterjee, A., Pfnür, H., & Bigall, N. C. (2022). Interparticle Distance Variation in Semiconductor Nanoplatelet Stacks. Advanced functional materials, 32(24), Artikel 2112621. https://doi.org/10.1002/adfm.202112621
Günther, A., Baran, M., Garg, R., Roth, B., & Kowalsky, W. (2022). Analysis of the thermal behavior of self-written waveguides. Optics and lasers in engineering, 151, Artikel 106922. https://doi.org/10.1016/j.optlaseng.2021.106922
Günther, A., Kushwaha, K., Baran, M., Rüsseler, A. K., Carstens, F., Ristau, D., Kowalsky, W., & Roth, B. (2022). Self-written waveguides as low-loss interconnections and sensing elements. In S. M. Garcia-Blanco, & P. Cheben (Hrsg.), Integrated Optics: Devices, Materials, and Technologies XXVI Artikel 1200412 (Proceedings of SPIE - The International Society for Optical Engineering; Band 12004). SPIE. https://doi.org/10.1117/12.2611336