PhoenixD Forschung
Publikationen

Publikationen im Rahmen des Exzellenzclusters PhoenixD

Die Forschungsleistung des Exzellenzclusters PhoenixD zeigt sich in den zahlreichen Publikationen, die seit 2019 veröffentlicht wurden. Eine kontinuierlich aktualisierte Übersicht finden Sie auf dieser Seite. In externen Publikationsportalen können Sie nach Veröffentlichungen mit der Identifikationsnummer (Project-ID) 390833453 und dem Kürzel EXC-2122 suchen.

Zeige Ergebnisse 361 - 380 von 865

2022


Mortazavi, B., Zhuang, X., & Rabczuk, T. (2022). A first-principles study on the physical properties of two-dimensional Nb3Cl8, Nb3Br8 and Nb3I8. Applied Physics A: Materials Science and Processing, 128(10), Artikel 934. https://doi.org/10.1007/s00339-022-06011-z
Mortazavi, B., Novikov, I. S., & Shapeev, A. V. (2022). A machine-learning-based investigation on the mechanical/failure response and thermal conductivity of semiconducting BC2N monolayers. CARBON, 188, 431-441. https://doi.org/10.1016/j.carbon.2021.12.039
Mortazavi, B., Shojaei, F., Yagmurcukardes, M., Shapeev, A. V., & Zhuang, X. (2022). Anisotropic and outstanding mechanical, thermal conduction, optical, and piezoelectric responses in a novel semiconducting BCN monolayer confirmed by first-principles and machine learning. CARBON, 200, 500-509. https://doi.org/10.1016/j.carbon.2022.08.077
Mortazavi, B., & Shapeev, A. V. (2022). Anisotropic mechanical response, high negative thermal expansion, and outstanding dynamical stability of biphenylene monolayer revealed by machine-learning interatomic potentials. FlatChem, 32, Artikel 100347. https://doi.org/10.1016/j.flatc.2022.100347
Mortazavi, B., Shojaei, F., Yagmurcukardes, M., Makaremi, M., & Zhuang, X. (2022). A Theoretical Investigation on the Physical Properties of Zirconium Trichalcogenides, ZrS3, ZrSe3 and ZrTe3 Monolayers. ENERGIES, 15(15), Artikel 5479. https://doi.org/10.3390/en15155479
Mortazavi, B., Shojaei, F., & Neek-Amal, M. (2022). Comment on "a novel two-dimensional boron-carbon-nitride (BCN) monolayer: A first-principles insight" [J. Appl. Phys. 130, 114301 (2021)]. Journal of applied physics, 131(21), Artikel 216101. https://doi.org/10.48550/arXiv.2203.16496, https://doi.org/10.1063/5.0078754
Mortazavi, B., Shojaei, F., & Shahrokhi, M. (2022). Comment on “Erratum: ‘Two-dimensional porous graphitic carbon nitride C6N7 monolayer: First-principles calculations’ [Appl. Phys. Lett. 119, 142102 (2021)]”: [Appl. Phys. Lett. 120, 189901 (2022)]. Applied physics letters, 121(5), Artikel 056101. https://doi.org/10.1063/5.0098022
Mortazavi, B., & Chowdhury, S. (2022). Comment on 'MoSi2N4single-layer: A novel two-dimensional material with outstanding mechanical, thermal, electronic and optical properties'. Journal of Physics D: Applied Physics, 55(6), Artikel 068001. https://doi.org/10.1088/1361-6463/ac316f
Mortazavi, B., & Neek-Amal, M. (2022). Comment on 'Two-dimensional carbon nitride C6N nanosheet with egg-comb-like structure and electronic properties of a semimetal [2021, Nanotechnology 32,215702]'. NANOTECHNOLOGY, 33(27), Artikel 278001. https://doi.org/10.1088/1361-6528/ac62b0
Mortazavi, B., Shojaei, F., Shahrokhi, M., Rabczuk, T., Shapeev, A. V., & Zhuang, X. (2022). Electronic, Optical, Mechanical and Li-Ion Storage Properties of Novel Benzotrithiophene-Based Graphdiyne Monolayers Explored by First Principles and Machine Learning. Batteries, 8(10), Artikel 194. https://doi.org/10.3390/batteries8100194
Mortazavi, B., Rajabpour, A., Zhuang, XY., Rabczuk, T., & Shapeev, AV. (2022). Exploring thermal expansion of carbon-based nanosheets by machine-learning interatomic potentials. CARBON, 186, 501-508. https://doi.org/10.1016/j.carbon.2021.10.059
Mortazavi, B., Shahrokhi, M., Javvaji, B., Shapeev, A. V., & Zhuang, X. (2022). Highly anisotropic mechanical and optical properties of 2D NbOX2 (X= Cl, Br, I) revealed by first-principle. NANOTECHNOLOGY, 33(27), Artikel 275701. https://doi.org/10.1088/1361-6528/ac622f
Mortazavi, B., & Zhuang, X. (2022). Low and Anisotropic Tensile Strength and Thermal Conductivity in the Single-Layer Fullerene Network Predicted by Machine-Learning Interatomic Potentials. COATINGS, 12(8), Artikel 1171. https://doi.org/10.3390/coatings12081171
Mortazavi, B., Shahrokhi, M., Zhuang, XY., Rabczuk, T., & Shapeev, AV. (2022). Mechanical, thermal transport, electronic and photocatalytic properties of penta-PdPS, -PdPSe and -PdPTe monolayers explored by first-principles calculations. Journal of Materials Chemistry C, 10(1), 329-336. https://doi.org/10.1039/d1tc05297g
Mortazavi, B., Zhuang, X., Rabczuk, T., & Shapeev, A. V. (2022). Outstanding thermal conductivity and mechanical properties in the direct gap semiconducting penta-NiN2 monolayer confirmed by first-principles. Physica E: Low-Dimensional Systems and Nanostructures, 140, Artikel 115221. https://doi.org/10.1016/j.physe.2022.115221
Mortazavi, B., & Zhuang, X. (2022). Ultrahigh strength and negative thermal expansion and low thermal conductivity in graphyne nanosheets confirmed by machine-learning interatomic potentials. FlatChem, 36, Artikel 100446. https://doi.org/10.1016/j.flatc.2022.100446
Mosel, P., Sankar, P., Zulqarnain, Appi, E., Jusko, C., Zuber, D., Kleinert, S., Düsing, J., Mapa, J., Dittmar, G., Püster, T., Böhmer-Brinks, P., Vahlbruch, J. W., Morgner, U., & Kovacev, M. (2022). Potential hazards and mitigation of X-ray radiation generated by laser-induced plasma from research-grade laser systems. Optics express, 30(20), 37038-37050. https://doi.org/10.1364/OE.468135
Müller, V., Hauk, M., Misfeldt, M., Müller, L., Wegener, H., Yan, Y., & Heinzel, G. (2022). Comparing GRACE-FO KBR and LRI Ranging Data with Focus on Carrier Frequency Variations. Remote sensing, 14(17), 4335. Artikel 4335. https://doi.org/10.3390/rs14174335
Neoričić, L., Jusko, C., Mikaelsson, S., Guo, C., Miranda, M., Zhong, S., Garmirian, F., Major, B., Brown, J. M., Gaarde, M. B., Couairon, A., Morgner, U., Kovačev, M., & Arnold, C. L. (2022). 4D spatio-temporal electric field characterization of ultrashort light pulses undergoing filamentation. Optics express, 30(15), 27938-27950. https://doi.org/10.1364/OE.461388
Nicklaus, K., Voss, K., Feiri, A., Kaufer, M., Dahl, C., Herding, M., Curzadd, B. A., Baatzsch, A., Flock, J., Weller, M., Müller, V., Heinzel, G., Misfeldt, M., & Delgado, J. J. E. (2022). Towards NGGM: Laser Tracking Instrument for the Next Generation of Gravity Missions. Remote sensing, 14(16), 4089. Artikel 4089. https://doi.org/10.3390/rs14164089