Rational Design of Field-Effect Sensors Using Partial Differential Equations, Bayesian Inversion, and Artificial Neural Networks
- verfasst von
- Amirreza Khodadadian, Maryam Parvizi, Mohammad Teshehlab, Clemens Heitzinger
- Abstract
Silicon nanowire field-effect transistors are promising devices used to detect minute amounts of different biological species. We introduce the theoretical and computational aspects of forward and backward modeling of biosensitive sensors. Firstly, we introduce a forward system of partial differential equations to model the electrical behavior, and secondly, a backward Bayesian Markov-chain Monte-Carlo method is used to identify the unknown parameters such as the concentration of target molecules. Furthermore, we introduce a machine learning algorithm according to multilayer feed-forward neural networks. The trained model makes it possible to predict the sensor behavior based on the given parameters.
- Organisationseinheit(en)
-
Institut für Angewandte Mathematik
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
- Externe Organisation(en)
-
K.N. Toosi University of Technology (KNTU)
Technische Universität Wien (TUW)
- Typ
- Artikel
- Journal
- Sensors
- Band
- 22
- Anzahl der Seiten
- 18
- ISSN
- 1424-8220
- Publikationsdatum
- 01.07.2022
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Analytische Chemie, Information systems, Biochemie, Atom- und Molekularphysik sowie Optik, Instrumentierung, Elektrotechnik und Elektronik
- Elektronische Version(en)
-
https://doi.org/10.3390/s22134785 (Zugang:
Offen)