Goal-oriented adaptive space-time finite element methods for regularized parabolic p-Laplace problems

verfasst von
B. Endtmayer, U. Langer, A. Schafelner
Abstract

We consider goal-oriented adaptive space-time finite-element discretizations of the regularized parabolic p-Laplace problem on completely unstructured simplicial space-time meshes. The adaptivity is driven by the dual-weighted residual (DWR) method since we are interested in an accurate computation of some possibly nonlinear functionals at the solution. Such functionals represent goals in which engineers are often more interested than the solution itself. The DWR method requires the numerical solution of a linear adjoint problem that provides the sensitivities for the mesh refinement. This can be done by means of the same full space-time finite element discretization as used for the primal non-linear problems. The numerical experiments presented demonstrate that this goal-oriented, full space-time finite element solver efficiently provides accurate numerical results for different functionals.

Organisationseinheit(en)
Institut für Angewandte Mathematik
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Externe Organisation(en)
Johannes Kepler Universität Linz (JKU)
Austrian Academy of Sciences
Typ
Artikel
Journal
Computers and Mathematics with Applications
Band
167
Seiten
286-297
Anzahl der Seiten
12
ISSN
0898-1221
Publikationsdatum
01.08.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Modellierung und Simulation, Theoretische Informatik und Mathematik, Computational Mathematics
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2306.07167 (Zugang: Offen)
https://doi.org/10.1016/j.camwa.2024.05.017 (Zugang: Offen)