Surrogate model approach for investigating the stability of a friction-induced oscillator of Duffing’s type

verfasst von
Jan N. Fuhg, Amélie Fau
Abstract

Parametric studies are required to detect instability regimes of dynamic systems. This prediction can be computationally demanding as it requires a fine exploration of large parametric space due to the disrupted mechanical behavior. In this paper, an efficient surrogate strategy is proposed to investigate the behavior of an oscillator of Duffing’s type in combination with an elasto-plastic friction force model. Relevant quantities of interest are discussed. Sticking time is considered using a machine learning technique based on Gaussian processes called kriging. The largest Lyapunov exponent is considered as an efficient indicator of chaotic motion. This indicator is estimated using a perturbation method. A dedicated adaptive kriging strategy for classification called MiVor is utilized and appears to be highly proficient in order to detect instabilities over the parametric space and can furthermore be used for complex response surfaces in multi-dimensional parametric domains.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Institut für Baumechanik und Numerische Mechanik
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Typ
Artikel
Journal
Nonlinear dynamics
Band
98
Seiten
1709-1729
Anzahl der Seiten
21
ISSN
0924-090X
Publikationsdatum
11.2019
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Steuerungs- und Systemtechnik, Luft- und Raumfahrttechnik, Meerestechnik, Maschinenbau, Angewandte Mathematik, Elektrotechnik und Elektronik
Elektronische Version(en)
https://arxiv.org/abs/1907.02208 (Zugang: Offen)
https://doi.org/10.1007/s11071-019-05281-2 (Zugang: Geschlossen)