Hierarchical LU Preconditioning for the Time-Harmonic Maxwell Equations

verfasst von
Maryam Parvizi, Amirreza Khodadadian, Sven Beuchler, Thomas Wick
Abstract

The time-harmonic Maxwell equations are used to study the effect of electric and magnetic fields on each other. Although the linear systems resulting from solving this system using FEMs are sparse, direct solvers cannot reach the linear complexity. In fact, due to the indefinite system matrix, iterative solvers suffer from slow convergence. In this work, we study the effect of using the inverse of \(\mathcal{H}\)-matrix approximations of the Galerkin matrices arising from Nédélec's edge FEM discretization to solve the linear system directly. We also investigate the impact of applying an \(\mathcal{H}-LU\) factorization as a preconditioner and we study the number of iterations to solve the linear system using iterative solvers.

Organisationseinheit(en)
Institut für Angewandte Mathematik
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Typ
Aufsatz in Konferenzband
Seiten
391-399
Anzahl der Seiten
9
Publikationsdatum
2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Modellierung und Simulation, Ingenieurwesen (insg.), Diskrete Mathematik und Kombinatorik, Steuerung und Optimierung, Computational Mathematics
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2211.11303 (Zugang: Offen)
https://doi.org/10.1007/978-3-031-50769-4_47 (Zugang: Geschlossen)