Hierarchical LU Preconditioning for the Time-Harmonic Maxwell Equations
- verfasst von
- Maryam Parvizi, Amirreza Khodadadian, Sven Beuchler, Thomas Wick
- Abstract
The time-harmonic Maxwell equations are used to study the effect of electric and magnetic fields on each other. Although the linear systems resulting from solving this system using FEMs are sparse, direct solvers cannot reach the linear complexity. In fact, due to the indefinite system matrix, iterative solvers suffer from slow convergence. In this work, we study the effect of using the inverse of \(\mathcal{H}\)-matrix approximations of the Galerkin matrices arising from Nédélec's edge FEM discretization to solve the linear system directly. We also investigate the impact of applying an \(\mathcal{H}-LU\) factorization as a preconditioner and we study the number of iterations to solve the linear system using iterative solvers.
- Organisationseinheit(en)
-
Institut für Angewandte Mathematik
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
- Typ
- Aufsatz in Konferenzband
- Seiten
- 391-399
- Anzahl der Seiten
- 9
- Publikationsdatum
- 2024
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Modellierung und Simulation, Ingenieurwesen (insg.), Diskrete Mathematik und Kombinatorik, Steuerung und Optimierung, Computational Mathematics
- Elektronische Version(en)
-
https://doi.org/10.48550/arXiv.2211.11303 (Zugang:
Offen)
https://doi.org/10.1007/978-3-031-50769-4_47 (Zugang: Geschlossen)