Outstanding thermal conductivity and mechanical properties in the direct gap semiconducting penta-NiN2 monolayer confirmed by first-principles

verfasst von
Bohayra Mortazavi, Xiaoying Zhuang, Timon Rabczuk, Alexander V Shapeev
Abstract

Nickel diazenide NiN

2, is a novel layered material with a pentagonal atomic arrangement, which has been very recently synthesized under high pressure (ACS Nano 15 (2021), 13,539). As a novel class of nitrogen-rich two-dimensional (2D) materials, we herein employ theoretical calculations to examine the stability of the MN

2 (M = Be, Mg, Ag, Au, Fe, Ir, Rh, Ni, Cu, Co, Pd, Pt) monolayers with the pentagonal atomic arrangement. The dynamical stability and lattice thermal conductivities are examined on the basis of machine-learning interatomic potentials. The obtained results confirm the desirable stability of the NiN

2, RhN

2, PtN

2 and PdN

2 nanosheets. Analysis of electronic band structures with the HSE06 functional confirms that the NiN

2, PtN

2 and PdN

2 monolayers are direct-gap semiconductors with band gaps of 1.10, 1.12 and 0.92 eV, respectively, whereas the RhN

2 monolayer shows a metallic nature. It is predicted that the NiN

2 nanosheet can exhibit a remarkably high elastic modulus, tensile strength and room temperature lattice thermal conductivity of 554 GPa, 33.1 GPa and ∼610 W/mK, respectively. The obtained first-principles results provide an extensive vision concerning the stability and outstanding physical properties of the penta-MN

2 nanosheets.

Organisationseinheit(en)
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Institut für Photonik
Externe Organisation(en)
Tongji University
Skolkovo Innovation Center
Typ
Artikel
Journal
Physica E: Low-Dimensional Systems and Nanostructures
Band
140
Anzahl der Seiten
1
ISSN
1386-9477
Publikationsdatum
06.2022
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Elektronische, optische und magnetische Materialien, Atom- und Molekularphysik sowie Optik, Physik der kondensierten Materie
Elektronische Version(en)
https://doi.org/10.1016/j.physe.2022.115221 (Zugang: Geschlossen)