Outstanding thermal conductivity and mechanical properties in the direct gap semiconducting penta-NiN2 monolayer confirmed by first-principles
- verfasst von
- Bohayra Mortazavi, Xiaoying Zhuang, Timon Rabczuk, Alexander V Shapeev
- Abstract
Nickel diazenide NiN
2, is a novel layered material with a pentagonal atomic arrangement, which has been very recently synthesized under high pressure (ACS Nano 15 (2021), 13,539). As a novel class of nitrogen-rich two-dimensional (2D) materials, we herein employ theoretical calculations to examine the stability of the MN
2 (M = Be, Mg, Ag, Au, Fe, Ir, Rh, Ni, Cu, Co, Pd, Pt) monolayers with the pentagonal atomic arrangement. The dynamical stability and lattice thermal conductivities are examined on the basis of machine-learning interatomic potentials. The obtained results confirm the desirable stability of the NiN
2, RhN
2, PtN
2 and PdN
2 nanosheets. Analysis of electronic band structures with the HSE06 functional confirms that the NiN
2, PtN
2 and PdN
2 monolayers are direct-gap semiconductors with band gaps of 1.10, 1.12 and 0.92 eV, respectively, whereas the RhN
2 monolayer shows a metallic nature. It is predicted that the NiN
2 nanosheet can exhibit a remarkably high elastic modulus, tensile strength and room temperature lattice thermal conductivity of 554 GPa, 33.1 GPa and ∼610 W/mK, respectively. The obtained first-principles results provide an extensive vision concerning the stability and outstanding physical properties of the penta-MN
2 nanosheets.
- Organisationseinheit(en)
-
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Institut für Photonik
- Externe Organisation(en)
-
Tongji University
Skolkovo Innovation Center
- Typ
- Artikel
- Journal
- Physica E: Low-Dimensional Systems and Nanostructures
- Band
- 140
- Anzahl der Seiten
- 1
- ISSN
- 1386-9477
- Publikationsdatum
- 06.2022
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Elektronische, optische und magnetische Materialien, Atom- und Molekularphysik sowie Optik, Physik der kondensierten Materie
- Elektronische Version(en)
-
https://doi.org/10.1016/j.physe.2022.115221 (Zugang:
Geschlossen)