Spectrally aligned integration of miniaturized substrate-free thin-film filters for fiber optical networks

verfasst von
Philipp Gehrke, Anna K. Rüsseler, Gerd A. Hoffmann, Andreas Wienke, Dietmar Kracht, Detlev Ristau
Abstract

This paper presents the active alignment of miniaturized, substrate-free optical thin-film filters (TFFs) according to the filters’ spectral transfer properties for integration into fiber optical networks. Optical TFFs are often designed for a specific narrow angle of incidence (AOI) range. Hence, a sufficient manufacturing precision of the angled photonic components connected to the optical filter is needed. These components then can no longer be used for different scenarios where i.e. the incident angle is changed. Conversely, the individual miniaturized optical filter chips can also vary in specification due to slight inhomogeneities during the production on a large-scale wafer. Therefore, not all filter chips on the wafer meet the demanded specifications at the designed AOI, resulting in a reduced yield. Moreover, it requires a time-consuming separation into different quality classes by measuring single filter chips on the wafer. To maximize the amount of usable chips, a procedure was developed to actively align the chips inside a precision optics assembly system by measuring the transmitted power at different wavelengths while tilting them towards the optical axis. When the optimal angle is found, the chip is glued into the optical network platform. Next to maximizing the yield, the production steps can be reduced because the prior separation into quality classes becomes redundant. Manufacturing tolerances during the thin-film deposition are equalized due to the active spectral alignment on a universal optical platform. With this technique, a more versatile process for TFF integration compared to passively aligned assemblies on fixed angle components is demonstrated.

Organisationseinheit(en)
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Institut für Quantenoptik
Externe Organisation(en)
Laser Zentrum Hannover e.V. (LZH)
Typ
Aufsatz in Konferenzband
Anzahl der Seiten
10
Publikationsdatum
02.10.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Elektronische, optische und magnetische Materialien, Physik der kondensierten Materie, Angewandte Informatik, Angewandte Mathematik, Elektrotechnik und Elektronik
Elektronische Version(en)
https://doi.org/10.1117/12.2676681 (Zugang: Geschlossen)