Low-frequency magnetic response of gold nanoparticles

verfasst von
Saba Harke, Atefeh Habibpourmoghadam, Andrey B. Evlyukhin, Antonio Calà Lesina, Boris N. Chichkov
Abstract

Gold nanoparticles (AuNPs) exposed to low frequency magnetic fields have shown promise in enhancing biological processes, such as cellular reprogramming. Despite the experimental evidence, a comprehensive understanding of the underlying physical principles and the corresponding theory remains elusive. The most common hypothesis is that functionalized nanoparticles transiently amplify magnetic fields, leading to improved cellular reprogramming efficiency. However, a detailed investigation on this topic is lacking. This paper bridges this knowledge gap by conducting a comprehensive investigation on the magnetic response of surface-modified AuNPs exposed to magnetic fields with frequencies up to hundreds of MHz. Starting with the inherent properties of bulk gold material, we explore a wide range of magnetic susceptibilities that might result from the redistribution of charge carriers due to bond molecules on the particle surfaces. Through analytical models and numerical electromagnetic simulations, we examine various geometric factors that can enhance the magnetic response, including the number of particles, spatial distribution, size, and shape. Our broad investigation provides researchers with analytical and numerical estimates of the magnetic response of nanoparticles, and the associated limits that can be expected. We found that a magnetic field enhancement comparable to the incident field requires very high magnetic susceptibilities, well beyond the values measured in functionalized gold nanoparticles thus far.

Organisationseinheit(en)
Institut für Quantenoptik
Hannoversches Zentrum für Optische Technologien (HOT)
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Institut für Transport- und Automatisierungstechnik
Computergestützte Photonik
Externe Organisation(en)
NIFE- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung
Typ
Artikel
Journal
Scientific reports
Band
13
Anzahl der Seiten
18
ISSN
2045-2322
Publikationsdatum
07.12.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemein
Elektronische Version(en)
https://doi.org/10.1038/s41598-023-48813-y (Zugang: Offen)