Fully on-chip photonic turnkey quantum source for entangled qubit/qudit state generation

verfasst von
Hatam Mahmudlu, Robert Johanning, Anahita Khodadad Kashi, Albert van Rees, Jörn P. Epping, Raktim Haldar, Klaus-J Boller, Michael Kues
Abstract

Integrated photonics has recently become a leading platform for the realization and processing of optical entangled quantum states in compact, robust and scalable chip formats, with applications in long-distance quantum-secured communication, quantum-accelerated information processing and nonclassical metrology. However, the quantum light sources developed so far have relied on external bulky excitation lasers, making them impractical prototype devices that are not reproducible, hindering their scalability and transfer out of the laboratory into real-world applications. Here we demonstrate a fully integrated quantum light source that overcomes these challenges through the integration of a laser cavity, a highly efficient tunable noise suppression filter (>55 dB) exploiting the Vernier effect, and a nonlinear microring for entangled photon-pair generation through spontaneous four-wave mixing. The hybrid quantum source employs an electrically pumped InP gain section and a Si

3N

4 low-loss microring filter system, and demonstrates high performance parameters, that is, pair emission over four resonant modes in the telecom band (bandwidth of ~1 THz) and a remarkable pair detection rate of ~620 Hz at a high coincidence-to-accidental ratio of ~80. The source directly creates high-dimensional frequency-bin entangled quantum states (qubits/qudits), as verified by quantum interference measurements with visibilities up to 96% (violating Bell’s inequality) and by density matrix reconstruction through state tomography, showing fidelities of up to 99%. Our approach, leveraging a hybrid photonic platform, enables scalable, commercially viable, low-cost, compact, lightweight and field-deployable entangled quantum sources, quintessential for practical, out-of-laboratory applications such as in quantum processors and quantum satellite communications systems.

Organisationseinheit(en)
Hannoversches Zentrum für Optische Technologien (HOT)
Institut für Photonik
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Externe Organisation(en)
University of Twente
Quix Quantum BV
LioniX International
Typ
Artikel
Journal
Nature Photonics
Band
17
Seiten
518-524
Anzahl der Seiten
7
ISSN
1749-4885
Publikationsdatum
06.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Elektronische, optische und magnetische Materialien, Atom- und Molekularphysik sowie Optik
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2206.08715 (Zugang: Offen)
https://doi.org/10.1038/s41566-023-01193-1 (Zugang: Offen)