A new mixed method for the biharmonic eigenvalue problem

verfasst von
V. Kosin, S. Beuchler, T. Wick
Abstract

In this paper, we investigate a new mixed method proposed by Rafetseder and Zulehner for Kirchhoff plates and apply it to fourth order eigenvalue problems. Using two auxiliary variables this new mixed method makes it possible to require only H1 regularity for the displacement and the auxiliary variables, without the demand of a convex domain. We provide a direct comparison, specifically in view of convergence orders, to the C0-IPG method and Ciarlet-Raviart's mixed method of vibration problems with the boundary conditions of the clamped plate and the simply supported plate. The numerical experiments are done with the open-source finite element library deal.II and include the implementation of the coupling of finite elements with elements on the boundary to incorporate non-trivial boundary conditions.

Organisationseinheit(en)
Institut für Angewandte Mathematik
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Externe Organisation(en)
Universität Paris-Saclay
Typ
Artikel
Journal
Computers and Mathematics with Applications
Band
136
Seiten
44-53
Anzahl der Seiten
10
ISSN
0898-1221
Publikationsdatum
15.04.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Modellierung und Simulation, Theoretische Informatik und Mathematik, Computational Mathematics
Elektronische Version(en)
https://doi.org/10.1016/j.camwa.2023.01.038 (Zugang: Geschlossen)