Accelerating wavepacket propagation with machine learning

verfasst von
Kanishka Singh, Ka Hei Lee, Daniel Peláez, Annika Bande
Abstract

In this work, we discuss the use of a recently introduced machine learning (ML) technique known as Fourier neural operators (FNO) as an efficient alternative to the traditional solution of the time-dependent Schrödinger equation (TDSE). FNOs are ML models which are employed in the approximated solution of partial differential equations. For a wavepacket propagating in an anharmonic potential and for a tunneling system, we show that the FNO approach can accurately and faithfully model wavepacket propagation via the density. Additionally, we demonstrate that FNOs can be a suitable replacement for traditional TDSE solvers in cases where the results of the quantum dynamical simulation are required repeatedly such as in the case of parameter optimization problems (e.g., control). The speed-up from the FNO method allows for its combination with the Markov-chain Monte Carlo approach in applications that involve solving inverse problems such as optimal and coherent laser control of the outcome of dynamical processes.

Organisationseinheit(en)
Institut für Anorganische Chemie
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Externe Organisation(en)
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Freie Universität Berlin (FU Berlin)
Universität Paris-Süd
Typ
Artikel
Journal
Journal of computational chemistry
Band
45
Seiten
2360-2373
Anzahl der Seiten
14
ISSN
0192-8651
Publikationsdatum
02.09.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Chemie (insg.), Computational Mathematics
Elektronische Version(en)
https://doi.org/10.1002/jcc.27443 (Zugang: Geschlossen)