Perpendicular Alignment of 2D Nanoplatelet Emitters in Electrospun Fibers

A Result of the Barus Effect?

verfasst von
Xu Liu, Fuzhao Li, Manuel Hohgardt, Lars Frederik Klepzig, Marcel Maximilian Willich, Henrik Alexander Christ, Andreas Schaate, Peter Behrens, Jannika Lauth, Henning Menzel, Peter Jomo Walla
Abstract

Stable jet electrospinning (SJES) is a special form of optical fiber generation that prevents chaotic fiber whipping typical for conventional electrospinning procedures. Incorporation of highly emissive semiconductor nanoplatelets (NPLs) in such fibers has very high potential in optical data transmission, optological circuits, fiber lasers, solar light concentrators and many other fields because NPLs exhibit strongly directed emission from their surface plane due to various in-plane transition dipole moments. However, potential orientation control of 2D-NPLs in SJES is entirely unknown as electric fields and various mechanical forces contribute in a complex manner simultaneously. Here, the observation of counter-intuitive yet very beneficial orientation of rectangular CdSe/CdS 2D-NLP in SJES perpendicular to the fiber drawing axis is reported. Scanning electron microscopy, 3D-single particle excitation polarization microscopy, 3D-photogoniometry, polarized emission spectroscopy and small angle X-ray scattering (SAXS) demonstrate aggregation free perpendicular alignment of the NPLs in poly(methyl methacrylate) (PMMA) fibers, resulting in dominant emission in directions parallel to the fiber. It is suggested that the observed vertical alignment is due to normal forces resulting from viscoelastic expansion when the polymer solution leaves the cannula (Barus effect) and that using such perpendicular nano-emitter alignment forces allows for the generation of novel materials also beyond fibers.

Organisationseinheit(en)
Institut für Physikalische Chemie und Elektrochemie
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
AG Anorganische Festkörper- und Materialchemie
Externe Organisation(en)
Technische Universität Braunschweig
Max-Planck-Institut für Multidisziplinäre Naturwissenschaften
Eberhard Karls Universität Tübingen
Typ
Artikel
Journal
Macromolecular Materials and Engineering
Band
308
ISSN
1438-7492
Publikationsdatum
15.09.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Chemische Verfahrenstechnik (insg.), Polymere und Kunststoffe, Organische Chemie, Werkstoffchemie
Elektronische Version(en)
https://doi.org/10.1002/mame.202300027 (Zugang: Offen)