Single-Photon Level Dispersive Fourier Transform

Ultrasensitive Characterization of Noise-Driven Nonlinear Dynamics

verfasst von
Lynn Sader, Surajit Bose, Anahita Khodadad Kashi, Yassin Boussafa, Raktim Haldar, Romain Dauliat, Philippe Roy, Marc Fabert, Alessandro Tonello, Vincent Couderc, Michael Kues, Benjamin Wetzel
Abstract

Dispersive Fourier transform is a characterization technique that allows directly extracting an optical spectrum from a time domain signal, thus providing access to real-time characterization of the signal spectrum. However, these techniques suffer from sensitivity and dynamic range limitations, hampering their use for special applications in, e.g., high-contrast characterizations and sensing. Here, we report on a novel approach to dispersive Fourier transform-based characterization using single-photon detectors. In particular, we experimentally develop this approach by leveraging mutual information analysis for signal processing and hold a performance comparison with standard dispersive Fourier transform detection and statistical tools. We apply the comparison to the analysis of noise-driven nonlinear dynamics arising from well-known modulation instability processes. We demonstrate that with this dispersive Fourier transform approach, mutual information metrics allow for successfully gaining insight into the fluctuations associated with modulation instability-induced spectral broadening, providing qualitatively similar signatures compared to ultrafast photodetector-based dispersive Fourier transform but with improved signal quality and spectral resolution (down to 53 pm). The technique presents an intrinsically unlimited dynamic range and is extremely sensitive, with a sensitivity reaching below the femtowatt (typically 4 orders of magnitude better than ultrafast dispersive Fourier transform detection). We show that this method can not only be implemented to gain insight into noise-driven (spontaneous) frequency conversion processes but also be leveraged to characterize incoherent dynamics seeded by weak coherent optical fields.

Organisationseinheit(en)
Institut für Photonik
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Externe Organisation(en)
Universite de Limoges
Typ
Artikel
Journal
ACS PHOTONICS
Band
10
Seiten
3915-3928
Anzahl der Seiten
14
ISSN
2330-4022
Publikationsdatum
15.11.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Elektronische, optische und magnetische Materialien, Biotechnologie, Atom- und Molekularphysik sowie Optik, Elektrotechnik und Elektronik
Elektronische Version(en)
https://doi.org/10.1021/acsphotonics.3c00711 (Zugang: Offen)