Platinum Cryoaerogel as a Low Loading Cathode Catalyst in PEM Water Electrolysis

An Initial Concept Evaluation

verfasst von
Lukas Stein, Hadir Borg, Christoph Wesemann, Zhijun Zhao, Christopher Moß, Patrick Trinke, Mohammed Ismael, Boris Bensmann, Nadja C. Bigall, Dirk Dorfs, Richard Hanke-Rauschenbach
Abstract

Proton exchange membrane water electrolysis (PEMWE) gained significant focus among the scientific community as a promising solution for green hydrogen production. Noble metals, platinum (Pt) and iridium in particular, play a significant role in the case of large-scale implementation due to limited availability. Recently, aerogel materials have been integrated into the PEMWE cell designs to enhance durability and reduce the high catalyst noble metal loadings. In this work, we present for the first time a Pt nanoparticle-based (NP-based) cryoaerogel as an active catalyst layer directly applied on the carbon support gas diffusion layer (GDL) at the cathode side. Some challenges were successfully overcome during the manufacturing process (i.e., wettability and mechanical connection issues). A pyrolysis step is employed to improve the connection between the Pt cryoaerogel and the carbon GDL. The structure of the synthesized Pt cryoaerogel is found to be greatly influenced by the pyrolysis temperature as confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The electrochemical characterization of the Pt cryoaerogel involves polarization curves, impedance measurements, and voltage loss breakdown as well as a 500 h durability test. The results show that the cryoaerogel catalyst layer has stable and reproducible performance with a high mass activity reached at a low Pt loading of 0.15

Organisationseinheit(en)
Fachgebiet Elektrische Energiespeichersysteme
Institut für Physikalische Chemie und Elektrochemie
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Laboratorium für Nano- und Quantenengineering
Institut für Elektrische Energiesysteme
Externe Organisation(en)
Laboratory for Nano and Quantum Engineering
Universität Hamburg
Typ
Artikel
Journal
ACS Applied Energy Materials
Band
8
Seiten
194-207
Anzahl der Seiten
14
Publikationsdatum
13.01.2025
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Chemische Verfahrenstechnik (sonstige), Energieanlagenbau und Kraftwerkstechnik, Elektrochemie, Werkstoffchemie, Elektrotechnik und Elektronik
Ziele für nachhaltige Entwicklung
SDG 7 – Erschwingliche und saubere Energie
Elektronische Version(en)
https://doi.org/10.1021/acsaem.4c02255 (Zugang: Offen)