Zeige Ergebnisse 41 - 60 von 865
2024
Jütte, L., Wang, N., Steven, M., & Roth, B. (2024). Perspectives for Generative AI-Assisted Art Therapy for Melanoma Patients. AI (Switzerland), 5(3), 1648-1669. https://doi.org/10.3390/ai5030080
Kiedrowski, K., Ferraro, M., Jauberteau, R., Wabnitz, S., Crocco, M. C., Formoso, V., Jupé, M., & Ristau, D. (2024). Comparing the laser-induced damage distribution in POFs with raytracing simulations. Optical materials express, 14(5). https://doi.org/10.1364/OME.520782
Kilic, M. S., Brehme, J., Deja, Y., Pawlak, J., Günther, A., Sander, A., Müller, D., Renz, A., Rajnak, C., Polášková, M., Roth, B., Sindelar, R. F., & Renz, F. (2024). Thin films with implemented molecular switches for the application in polymer-based optical waveguides. Hyperfine Interactions, 245, Artikel 8. https://doi.org/10.1007/s10751-024-01849-6
Kishore, A., Varughese, A. M., Roth, B., & Zeilinger, C. (2024). A miniaturized test for stress biomarker detection by quantum dots on microarrays. In G. L. Cote, & J. S. Baba (Hrsg.), Optical Diagnostics and Sensing XXIV: Toward Point-of-Care Diagnostics Artikel 1285006 (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Band 12850). SPIE. https://doi.org/10.1117/12.3002242
Kishore, A., Varughese, A. M., Roth, B., & Zeilinger, C. (2024). Fabrication of a low-cost benchtop optical imager for quantum dot microarray-based stress biomarker detection. Biomedical optics express, 15(7), 4147-4161. https://doi.org/10.1364/BOE.527338
Klepzig, L. F., Keppler, N. C., Rudolph, D. A., Schaate, A., Behrens, P., & Lauth, J. (2024). Highly Transparent, Yet Photoluminescent: 2D CdSe/CdS Nanoplatelet-Zeolitic Imidazolate Framework Composites Sensitive to Gas Adsorption. SMALL, 20(18), Artikel 2309533. https://doi.org/10.1002/smll.202309533
Knoke, T., Kinnewig, S., Beuchler, S., & Wick, T. (2024). Neural Network Interface Condition Approximation in a Domain Decomposition Method Applied to Maxwell’s Equations. In Z. Dostal, T. Kozubek, A. Klawonn, L. F. Pavarino, O. B. Widlund, U. Langer, & J. Sístek (Hrsg.), Domain Decomposition Methods in Science and Engineering XXVII (S. 271-278). (Lecture Notes in Computational Science and Engineering; Band 149). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-50769-4_32
Kranert, F., Hinkelmann, M., Lachmayer, R., Neumann, J., & Kracht, D. (2024). Polymer-based 3D printing of function-integrated optomechanics: design guidelines and system evaluation. Rapid prototyping journal, 30(11), 246-258. https://doi.org/10.1108/RPJ-02-2023-0073
Kukk, A. F., Wu, D., Panzer, R., Emmert, S., & Roth, B. (2024). Integrated ultrasound and photoacoustic tomography for 3D imaging of human skin lesions. In C. Boudoux, & J. W. Tunnell (Hrsg.), Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XXII (Band 12831). Artikel 128310G (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Band 12831). SPIE. https://doi.org/10.1117/12.3001947
Kukk, A. F., Scheling, F., Panzer, R., Emmert, S., & Roth, B. (2024). Non-invasive 3D imaging of human melanocytic lesions by combined ultrasound and photoacoustic tomography: a pilot study. Scientific reports, 14, Artikel 2768. https://doi.org/10.1038/s41598-024-53220-y
Kukk, A. F., Wu, D., Panzer, R., Emmert, S., & Roth, B. (2024). Non-invasive optical biopsy of skin lesions by multimodal system with OCT, ultrasound, photoacoustics and Raman spectroscopy. In F. S. Azar, & X. Intes (Hrsg.), Multimodal Biomedical Imaging XIX Artikel 1283408 (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Band 12834). SPIE. https://doi.org/10.1117/12.3001918
Landes, T., Bethge, H., Zabic, M., Heinemann, D. (Hrsg.), & Heinemann, D. (Hrsg.) (2024). Perspectives of micro-mechanical assessment of the apple fruit cuticle. 12. Beitrag in SPIE Photonics West 2024, San Francisco, California, USA / Vereinigte Staaten. https://doi.org/10.1117/12.3001528
Liu, Q., Nanthakumar, S. S., Li, B., Cheng, T., Bittner, F., Ma, C., Ding, F., Zheng, L., Roth, B., & Zhuang, X. (2024). Converse Flexoelectricity in van der Waals (vdW) Three-Dimensional Topological Insulator Nanoflakes. Journal of Physical Chemistry C, 128(38), 16265-16273. https://doi.org/10.1021/acs.jpcc.4c05690
Ma, H., Evlyukhin, A. B., Miroshnichenko, A. E., Zhu, F., Duan, S., Wu, J., Zhang, C., Chen, J., Jin, B., Padilla, W. J., & Fan, K. (2024). Extremely Thin Perfect Absorber by Generalized Multipole Bianisotropic Effect. Advanced optical materials, 12(7), Artikel 2301968. https://doi.org/10.48550/arXiv.2308.07139, https://doi.org/10.1002/adom.202301968
Matiushechkina, M., Evlyukhin, A. B., Zenin, V. A., Chichkov, B. N., & Heurs, M. (2024). Perfect Mirror Effects in Metasurfaces of Silicon Nanodisks at Telecom Wavelength. Advanced optical materials, 12(18), Artikel 2400191. https://doi.org/10.1002/adom.202400191
Melchert, O., & Demircan, A. (2024). Numerical investigation of solitary-wave solutions for the nonlinear Schrödinger equation perturbed by third-order and negative fourth-order dispersion. Physical Review A, 110(4), Artikel 043518. https://doi.org/10.1103/PhysRevA.110.043518
Mortazavi, B., & Zinatizadeh, A. A. (2024). Advancements in nanofluidics: Unveiling the dynamics of nanoconfined water and its implications for emerging technologies. Science China: Physics, Mechanics and Astronomy, 67(10), Artikel 104731. https://doi.org/10.1007/s11433-024-2463-2
Mortazavi, B. (2024). Goldene: An Anisotropic Metallic Monolayer with Remarkable Stability and Rigidity and Low Lattice Thermal Conductivity. MATERIALS, 17(11), Artikel 2653. https://doi.org/10.3390/ma17112653
Nanda, A., Kues, M., & Calà Lesina, A. (2024). Exploring the fundamental limits of integrated beam splitters with arbitrary phase via topology optimization. Optics letters, 49(5), 1125-1128. https://doi.org/10.1364/OL.512100
Noii, N., Wick, T., & Khodadadian, A. (2024). Global-Local Forward Models within Bayesian Inversion for Large Strain Fracturing in Porous Media. In Z. Dostal, T. Kozubek, A. Klawonn, L. F. Pavarino, O. B. Widlund, U. Langer, & J. Sístek (Hrsg.), Domain Decomposition Methods in Science and Engineering XXVII (S. 375-382). (Lecture Notes in Computational Science and Engineering; Band 149). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.48550/arXiv.2304.04055, https://doi.org/10.1007/978-3-031-50769-4_45