All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data

authored by
The LIGO Scientific Collaboration , R. Abbott, H. Abe, F. Acernese, K. Ackley, N. Adhikari, R. X. Adhikari, V. K. Adkins, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, S. Albanesi, R. A. Alfaidi, A. Allocca, P. A. Altin, A. Amato, C. Anand, S. Anand, A. Ananyeva, S. B. Anderson, W. G. Anderson, M. Ando, T. Andrade, N. Andres, M. Andrés-Carcasona, T. Andrić, S. V. Angelova, S. Ansoldi, S. Bose, M. Carlassara, K. Danzmann, A. Heidt, M. Heurs, A. Hreibi, J. Junker, N. Knust, H. Lück, M. Matiushechkina, M. Nery, B. W. Schulte, D. Wilken, B. Willke, D. S. Wu, Fabio Bergamin, Aparna Bisht, Nina Bode, Phillip Booker, Marc Brinkmann, N. Gohlke, J. Heinze, S. Hochheim, Wolfgang Kastaun, R. Kirchhoff, Philip Koch, N. Koper, Volker Kringel, N. V. Krishnendu, G. Kuehn, S. Leavey, J. Lehmann, James Lough, Moritz Mehmet, Fabian Meylahn, Nikhil Mukund, S. L. Nadji, F. Ohme, M. Schneewind, B. F. Schutz, Y. Setyawati, J. Venneberg, J. von Wrangel, Michael Weinert, F. Wellmann, Peter Weßels, J. Woehler
Abstract

We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivative from -10-8 to 10-9 Hz/s. No statistically significant periodic gravitational-wave signal is observed by any of the four searches. As a result, upper limits on the gravitational-wave strain amplitude h0 are calculated. The best upper limits are obtained in the frequency range of 100 to 200 Hz and they are ∼1.1×10-25 at 95% confidence level. The minimum upper limit of 1.10×10-25 is achieved at a frequency 111.5 Hz. We also place constraints on the rates and abundances of nearby planetary- and asteroid-mass primordial black holes that could give rise to continuous gravitational-wave signals.

Organisation(s)
Institute of Gravitation Physics
Institute of Transport and Automation Technology
PhoenixD: Photonics, Optics, and Engineering - Innovation Across Disciplines
External Organisation(s)
California Institute of Caltech (Caltech)
Tokyo Institute of Technology
Universita di Salerno
Monte S. Angelo University Federico II
Monash University
University of Wisconsin Milwaukee
Louisiana State University
Australian National University
Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
University of Cambridge
Friedrich Schiller University Jena
University of Birmingham
Northwestern University
Instituto Nacional de Pesquisas Espaciais
Cardiff University
Sezione di Pisa
Tata Institute of Fundamental Research (TIFR HYD)
National Astronomical Observatory of Japan (NAOJ)
University of Turin
Istituto Nazionale di Fisica Nucleare (INFN)
Université Claude Bernard Lyon 1
University of Tokyo
Universitat de Barcelona
Universite de Savoie
Catalan Institution for Research and Advanced Studies (ICREA)
Gran Sasso Science Institute
University of Strathclyde
University of Udine
Inter-University Centre for Astronomy and Astrophysics India
University of Glasgow
Type
Article
Journal
Physical Review D
Volume
106
ISSN
2470-0010
Publication date
28.11.2022
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Nuclear and High Energy Physics
Electronic version(s)
https://doi.org/10.1103/PhysRevD.106.102008 (Access: Closed)