Threshold effects and metastability in solitary refractive index wells

authored by
Oliver Melchert, Ihar Babushkin, Uwe Morgner, Ayhan Demircan
Abstract

Threshold effects and trapping subsequent to the collision of a projectile wave packet and a target are ubiquitous in quantum mechanics. In nonlinear optics, the interaction between a soliton (S) and a dispersive wave (DW) exhibits similarities to wave-packet scattering and offers means for all-optical control [1]. However, threshold effects akin to those in quantum mechanical potential scattering when a bound-state eigenvalue is close to the continuum, and generation of metastable states due to scattering resonances, are not directly allowed. Such phenomena are of high interest in the context of optical technologies concerning storage and manipulation of optical data.

Organisation(s)
PhoenixD: Photonics, Optics, and Engineering - Innovation Across Disciplines
Hannover Centre for Optical Technologies (HOT)
Institute of Quantum Optics
Type
Conference contribution
Publication date
2019
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Spectroscopy, Electronic, Optical and Magnetic Materials, Instrumentation, Atomic and Molecular Physics, and Optics, Computer Networks and Communications
Electronic version(s)
https://doi.org/10.1109/CLEOE-EQEC.2019.8873159 (Access: Closed)