Selected publications by Prof. Dr. Marius Lindauer

Category A*

  • Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer,  Frank Hutter Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning. J. Mach. Learn. Res. (JMLR) 23:1-61 (2022)
    https://doi.org/10.48550/arXiv.2007.04074
  • Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass, Frank Hutter: SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization. J. Mach. Learn. Res. (JMLR) 23: 54:1-54:9 (2022)
    https://doi.org/10.48550/arXiv.2109.09831
  • Steven Adriaensen, André Biedenkapp, Gresa Shala, Noor H. Awad, Theresa Eimer, Marius Lindauer, Frank Hutter: Automated Dynamic Algorithm Configuration. J. Artif. Intell. Res. (JAIR) 75: 1633-1699 (2022)
    https://doi.org/10.48550/arXiv.2205.13881
  • Carl Hvarfner, Danny Stoll, Artur L. F. Souza, Marius Lindauer, Frank Hutter, Luigi Nardi: $\pi$BO: Augmenting Acquisition Functions with User Beliefs for Bayesian Optimization. Proceedings of the international conference of learning representations (ICLR) 2022
    https://doi.org/10.48550/arXiv.2204.11051
  • Lucas Zimmer, Marius Lindauer, Frank Hutter: Auto-Pytorch: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 43(9): 3079-3090 (2021)
    DOI: 10.1109/TPAMI.2021.3067763
  • Arlind Kadra, Marius Lindauer, Frank Hutter, Josif Grabocka: Well-tuned Simple Nets Excel on Tabular Datasets. Proceedings of the international conference on neural information processing systems (NeurIPS) 2021: 23928-23941
    https://doi.org/10.48550/arXiv.2106.11189
  • Julia Moosbauer, Julia Herbinger, Giuseppe Casalicchio, Marius Lindauer, Bernd Bischl: Explaining Hyperparameter Optimization via Partial Dependence Plots. Proceedings of the international conference on neural information processing systems (NeurIPS) 2021: 2280-2291
    https://doi.org/10.48550/arXiv.2111.04820
  • André Biedenkapp, Raghu Rajan, Frank Hutter, Marius Lindauer: TempoRL: Learning When to Act. Proceedings of the international conference on machine learning (ICML) 2021: 914-924
    https://doi.org/10.48550/arXiv.2106.05262
  • Theresa Eimer, André Biedenkapp, Frank Hutter, Marius Lindauer: Self-Paced Context Evaluation for Contextual Reinforcement Learning. Proceedings of the international conference on machine learning ICML 2021: 2948-2958
    https://doi.org/10.48550/arXiv.2106.05110
  • Lior Fuks, Noor H. Awad, Frank Hutter, Marius Lindauer: An Evolution Strategy with Progressive Episode Lengths for Playing Games. Proceedings of the international joint conference on AI (IJCAI) 2019: 1234-1240
    https://doi.org/10.24963/ijcai.2019/172

Category B*

  • SMAC3: Versatile Bayesian Optimization Package for Hyperparameter Optimization. About 50k downloads via PyPi each month. From 2015-2018, lead developer. From 2019 onwards, project lead (supervision and project administration)
     
  • Auto-Sklearn: Automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. About 7.200 stars on GitHub and, each month, about 32.000 downloads via PyPi. From 2015 onwards, co-supervisor
     
  • Auto-PyTorch: An AutoML package for deep learning on tabular data. About 2.100 stars on GitHub. From 2018 onwards, co-supervisor and project administrator
     
  • Together with my co-authors, I applied for 12 patents since 2018
     
  • Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias Springenberg, Matthias Urban, Michael Burkart, Maximilian Dippel, Marius Lindauer, Frank Hutter: Towards Automatically-Tuned Deep Neural Networks. Automated Machine Learning 2019: 135-149. Book chapter of “AutoML: Methods, Systems, Challenges” Writing original draft and supervision
*Description of the categories according to the specifications of the German Research Foundation

Category A
scientific or scholarly papers published in peer-reviewed journals, peer reviewed contributions to conferences or anthology volumes, and book publications

Category B
any other form of published research results, data sets, protocols of clinical trials, software packages, patents applied for and granted, blog contributions, other forms of scientific or scholarly output

An overview of all publications by Prof. Dr. Marius Lindauer can be found in the Research Information System (FIS) of the university .