PhoenixD Research
List of Publications

Publications in the Framework of the Cluster of Excellence PhoenixD

The research performance of the PhoenixD Cluster of Excellence is reflected in the numerous publications that have been published since 2019. A continuously updated overview can be found on this page. You can search for publications in external publication platforms with the identification number (Project ID) 390833453 and EXC-2122.

Showing results 601 - 620 out of 914

2021


Mende, M., Carstens, F., Ehlers, H., & Ristau, D. (2021). Preferential sputtering of metal oxide mixture thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 39(2), Article 023406. https://doi.org/10.1116/6.0000799
Mevert, R., Binhammer, Y., Dietrich, C. M., Andrade, J. R. C., Beichert, L., Binhammer, T., Fan, J., & Morgner, U. (2021). Femtosecond non-collinear optical parametric oscillator in the visible (VIS-NOPO). In CLEO: QELS_Fundamental Science, CLEO: QELS 2021 Article JW1A.12 OSA - The Optical Society. https://doi.org/10.1364/CLEO_AT.2021.JW1A.12
Mevert, R., Binhammer, Y., DIetrich, C. M., Andrade, J. R. C., Beichert, L., Binhammer, T., Fan, J., & Morgner, U. (2021). Femtosecond non-collinear optical parametric oscillator in the visible (VIS-NOPO). In 2021 Conference on Lasers and Electro-Optics: CLEO 2021 - Proceedings Institute of Electrical and Electronics Engineers Inc.. https://ieeexplore.ieee.org/document/9572820/
Mevert, R., Binhammer, Y., Dietrich, C. M., Beichert, L., Cardoso de Andrade, J. R., Binhammer, T., Fan, J., & Morgner, U. (2021). Widely tunable, high-power, femtosecond noncollinear optical parametric oscillator in the visible spectral range. Photonics research, 9(9), 1715-1718. https://doi.org/10.1364/PRJ.426107
Mortazavi, B., Podryabinkin, E. V., Novikov, I. S., Rabczuk, T., Zhuang, X., & Shapeev, A. V. (2021). Accelerating first-principles estimation of thermal conductivity by machine-learning interatomic potentials: A MTP/ShengBTE solution. Computer physics communications, 258, Article 107583. https://doi.org/10.1016/j.cpc.2020.107583
Mortazavi, B., Javvaji, B., Shojaei, F., Rabczuk, T., Shapeev, A. V., & Zhuang, X. (2021). Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles. NANO ENERGY, 82, Article 105716. https://doi.org/10.1016/j.nanoen.2020.105716
Mortazavi, B., Shojaei, F., Zhuang, X., & Pereira, L. F. C. (2021). First-principles investigation of electronic, optical, mechanical and heat transport properties of pentadiamond: A comparison with diamond. Carbon Trends, 3. https://doi.org/10.1016/j.cartre.2021.100036
Mortazavi, B., Silani, M., Podryabinkin, E. V., Rabczuk, T., Zhuang, X., & Shapeev, A. V. (2021). First-Principles Multiscale Modeling of Mechanical Properties in Graphene/Borophene Heterostructures Empowered by Machine-Learning Interatomic Potentials. Advanced materials, 33(35), Article 2102807. https://doi.org/10.1002/adma.202102807
Mortazavi, B., Shojaei, F., Rabczuk, T., & Zhuang, X. (2021). High tensile strength and thermal conductivity in BeO monolayer: A first-principles study. FlatChem, 28, Article 100257. https://doi.org/10.48550/arXiv.2106.03416, https://doi.org/10.1016/j.flatc.2021.100257
Mortazavi, B., Shojaei, F., Javvaji, B., Rabczuk, T., & Zhuang, X. (2021). Outstandingly high thermal conductivity, elastic modulus, carrier mobility and piezoelectricity in two-dimensional semiconducting CrC2N4: a first-principles study. Materials Today Energy, 22, Article 100839. https://doi.org/10.48550/arXiv.2108.12808, https://doi.org/10.1016/j.mtener.2021.100839
Mortazavi, B., Shojaei, F., & Zhuang, X. (2021). Ultrahigh stiffness and anisotropic Dirac cones in BeN4 and MgN4 monolayers: a first-principles study. Materials Today Nano, 15, Article 100125. https://doi.org/10.48550/arXiv.2105.09733, https://doi.org/10.1016/j.mtnano.2021.100125
Mortazavi, B. (2021). Ultrahigh thermal conductivity and strength in direct-gap semiconducting graphene-like BC6N: A first-principles and classical investigation. CARBON, 182, 373-383. https://doi.org/10.48550/arXiv.2106.07090, https://doi.org/10.1016/j.carbon.2021.06.038
Mosel, P., Sankar, P., Düsing, J. F., Dittmar, G., Püster, T., Jäschke, P., Vahlbruch, J. W., Morgner, U., & Kovacev, M. (2021). X-ray dose rate and spectral measurements during ultrafast laser machining using a calibrated (High-sensitivity) novel x-ray detector. MATERIALS, 14(16), Article 4397. https://doi.org/10.3390/ma14164397
Müller, D., Zámbó, D., Dorfs, D., & Bigall, N. C. (2021). Cryoaerogels and Cryohydrogels as Efficient Electrocatalysts. SMALL, 17(18), Article 2007908. https://doi.org/10.1002/smll.202007908
Müller, D., Klepzig, L. F., Schlosser, A., Dorfs, D., & Bigall, N. C. (2021). Structural Diversity in Cryoaerogel Synthesis. LANGMUIR, 37(17), 5109-5117. https://doi.org/10.1021/acs.langmuir.0c03619
Nicolas, R., Shi, L., Chanteau, B., Franz, D., Kholodstova, M., Ripault, Q., Andrade, J. R. C., Iwan, B., Boutu, W., Kovacev, M., & Merdji, H. (2021). Plasmon-Amplified Third Harmonic Generation in Metal/Dielectric Resonators. Plasmonics, 16(6), 1883-1889. https://doi.org/10.1007/s11468-021-01444-3
Noii, N., Khodadadian, A., & Wick, T. (2021). Bayesian inversion for anisotropic hydraulic phase-field fracture. Computer Methods in Applied Mechanics and Engineering, 386, Article 114118. https://doi.org/10.1016/j.cma.2021.114118
Noii, N., Khodadadian, A., Ulloa, J., Aldakheel, F., Wick, T., François, S., & Wriggers, P. (2021). Bayesian inversion for unified ductile phase-field fracture. Computational mechanics, 68(4), 943-980. https://doi.org/10.1007/s00466-021-02054-w
Noori, H., Mortazavi, B., Keshtkari, L., Zhuang, X., & Rabczuk, T. (2021). Nanopore creation in MoS2 and graphene monolayers by nanoparticles impact: a reactive molecular dynamics study. Applied Physics A: Materials Science and Processing, 127(7), Article 541. https://doi.org/10.1007/s00339-021-04693-5
Pan, G. M., Shu, F. Z., Wang, L., Shi, L., & Evlyukhin, A. B. (2021). Plasmonic anapole states of active metamolecules. Photonics research, 9(5), 822-828. https://doi.org/10.1364/PRJ.416256