Nonlinear optical switching in thin film coatings in relation to the damage threshold

authored by
Morten Steinecke, Kevin Kiedrowski, Marco Jupé, Andreas Wienke, Detlev Ristau
Abstract

We demonstrate a novel concept for an all-optical switch based on the optical Kerr-effect in thin film interference coatings. The switching between transmittance and reflectance relies on highly Kerr-active coating materials in combination with large internal intensity enhancement in thin film interference coatings. The paper investigates the switching performance as well as its relation to the laser induced damage threshold of these novel components. A modulation depth of 30 % was achieved without damage to the component, which very promising for later applications as power limiters or mode locking components.

Organisation(s)
PhoenixD: Photonics, Optics, and Engineering - Innovation Across Disciplines
Institute of Quantum Optics
External Organisation(s)
Laser Zentrum Hannover e.V. (LZH)
Type
Conference contribution
Publication date
2022
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Electronic, Optical and Magnetic Materials, Condensed Matter Physics, Computer Science Applications, Applied Mathematics, Electrical and Electronic Engineering
Electronic version(s)
https://doi.org/10.1117/12.2642756 (Access: Closed)