Tuning the optical properties of the metal-organic framework UiO-66 via ligand functionalization

authored by
Marvin Treger, Adrian Hannebauer, Andreas Schaate, Jan L. Budde, Peter Behrens, Andreas M. Schneider
Abstract

Metal-organic frameworks (MOFs) are a promising class of materials for optical applications, especially due to their modular design which allows fine-tuning of the relevant properties. The present theoretical study examines the Zr-based UiO-66-MOF and derivatives of it with respect to their optical properties. Starting from the well-known monofunctional amino- and nitro-functionalized UiO-66 derivatives, we introduce novel UiO-66-type MOFs containing bifunctional push-pull 1,4-benzenedicarboxylate (bdc) linkers. The successful synthesis of such a novel UiO-66 derivative is also reported. It was carried out using a para-nitroaniline (PNA)-based bdc-analogue linker. Applying density functional theory (DFT), suitable models for all UiO-66-MOF analogues were generated by assessing different exchange-correlation functionals. Afterwards, HSE06 hybrid functional calculations were performed to obtain the electronic structures and optical properties. The detailed HSE06 electronic structure calculations were validated with UV-Vis measurements to ensure reliable results. Finally, the refractive index dispersion of the seven UiO-66-type materials is compared, showing the possibility to tailor the optical properties by the use of functionalized linker molecules. Specifically, the refractive index can be varied over a wide range from 1.37 to 1.78.

Organisation(s)
PhoenixD: Photonics, Optics, and Engineering - Innovation Across Disciplines
Institute of Inorganic Chemistry
Inorganic Solid State and Materials Chemistry group
Hannover School for Nanotechnology
Type
Article
Journal
Physical Chemistry Chemical Physics
Volume
25
Pages
6333-6341
No. of pages
9
ISSN
1463-9076
Publication date
03.02.2023
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Physics and Astronomy(all), Physical and Theoretical Chemistry
Electronic version(s)
https://doi.org/10.1039/d2cp03746g (Access: Open)