PhoenixD Research
List of Publications

Publications in the Framework of the Cluster of Excellence PhoenixD

The research performance of the PhoenixD Cluster of Excellence is reflected in the numerous publications that have been published since 2019. A continuously updated overview can be found on this page. You can search for publications in external publication platforms with the identification number (Project ID) 390833453 and EXC-2122.

Showing results 61 - 80 out of 929

2024


Haldar, R., Mahmudlu, H., Johanning, R., Van Rees, A., Kashi, A. K., Epping, J. P., Boller, K. J., & Kues, M. (2024). Laser-Integrated Entirely On-Chip Turnkey Quantum Photonic Sources. In 2024 16th International Conference on COMmunication Systems and NETworkS: COMSNETS (pp. 1024-1027). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/COMSNETS59351.2024.10427055
Hannebauer, A., Krysiak, Y., & Schaate, A. (2024). A Method for Determining Incorporation Depth in Core-Shell UiO-66 Nanoparticles Synthesized Via Postsynthetic Exchange. Inorganic chemistry, 63(25), 11897-11906. https://doi.org/10.1021/acs.inorgchem.4c01787
Haubold, T., Beuchler, S., & Schöberl, J. (2024). High Order Biorthogonal Functions in H (curl). SIAM journal on numerical analysis, 62(5), 2331-2348. https://doi.org/10.48550/arXiv.2310.06986, https://doi.org/10.1137/23M1606794
Heinzel, G., Alvarez-Vizoso, J., Dovale-Álvarez, M., & Wiesner, K. (2024). Frequency planning for LISA. Physical Review D, 110(4), Article 042002. https://doi.org/10.1103/PhysRevD.110.042002
Herzog, T., Habibpourmoghadam, A., Locmelis, S., Calà Lesina, A., & Polarz, S. (2024). Oxygen Vacancy Controlled Hyperbolic Metamaterial Based on Indium Tin Oxide (ITO) Nanotubes with Switchable Optical Properties. Advanced functional materials, 34(45), Article 2407552. https://doi.org/10.1002/adfm.202407552
Hindricks, K. D. J., Bon, V., Treske, O., Hannebauer, A., Schaate, A., Krysiak, Y., & Kaskel, S. (2024). Guest-Induced Flexibility in a Multifunctional Ruthenium-Based Metal-Organic Framework. Chemistry of materials, 36(2), 657-665. https://doi.org/10.1021/acs.chemmater.3c01845
Hlushchenko, A. V., Andrieieva, O. L., Evlyukhin, A. B., & Tuz, V. R. (2024). Trapped Mode Excitation in Dielectric Metasurfaces with an Inhomogeneous Superstrate. Journal of Physical Chemistry C, 128(22), 9398–9406. https://doi.org/10.1021/acs.jpcc.4c02996
Huarcaya Azañon, V. J. (2024). Advancements in optical readout technologies: Test mass sensing and laser-frequency stabilization techniques for optical compact interferometry. [Doctoral thesis, Leibniz University Hannover]. Leibniz Universität Hannover. https://doi.org/10.15488/16938
Jodlbauer, D., Langer, U., Wick, T., & Zulehner, W. (2024). Matrix-Free Monolithic Multigrid Methods for Stokes and Generalized Stokes Problems. SIAM Journal on Scientific Computing, 46(3), A1599-A1627. https://doi.org/10.48550/arXiv.2205.15770, https://doi.org/10.1137/22M1504184
Junker, P., & Wick, T. (2024). Space-time variational material modeling: a new paradigm demonstrated for thermo-mechanically coupled wave propagation, visco-elasticity, elasto-plasticity with hardening, and gradient-enhanced damage. Computational mechanics, 73(2), 365-402. https://doi.org/10.1007/s00466-023-02371-2
Junker, P., Roth, J., & Wick, T. (2024). Space-time variational material modeling: Numerical simulations for the wave equation with velocity initial and final time condictions. In A. Korobenko, M. Laforest, S. Prudhomme, & R. Vaziri (Eds.), 16th World Congress in Computational Mechanics (WCCM) (World Congress in Computational Mechanics and ECCOMAS Congress). International Centre for Numerical Methods in Engineering, CIMNE. https://doi.org/10.23967/wccm.2024.036
Jütte, L., Patel, H., & Roth, B. (2024). Advancing dermoscopy through a synthetic hair benchmark dataset and deep learning-based hair removal. Journal of biomedical optics, 29(11), Article 116003. https://doi.org/10.1117/1.JBO.29.11.116003
Jütte, L., González-Villà, S., Quintana, J., Steven, M., Garcia, R., & Roth, B. (2024). Integrating generative AI with ABCDE rule analysis for enhanced skin cancer diagnosis, dermatologist training and patient education. Frontiers in Medicine, 11, Article 1445318. https://doi.org/10.3389/fmed.2024.1445318
Jütte, L., Wang, N., Steven, M., & Roth, B. (2024). Perspectives for Generative AI-Assisted Art Therapy for Melanoma Patients. AI (Switzerland), 5(3), 1648-1669. https://doi.org/10.3390/ai5030080
Kiedrowski, K., Ferraro, M., Jauberteau, R., Wabnitz, S., Crocco, M. C., Formoso, V., Jupé, M., & Ristau, D. (2024). Comparing the laser-induced damage distribution in POFs with raytracing simulations. Optical materials express, 14(5). https://doi.org/10.1364/OME.520782
Kilic, M. S., Brehme, J., Deja, Y., Pawlak, J., Günther, A., Sander, A., Müller, D., Renz, A., Rajnak, C., Polášková, M., Roth, B., Sindelar, R. F., & Renz, F. (2024). Thin films with implemented molecular switches for the application in polymer-based optical waveguides. Hyperfine Interactions, 245, Article 8. https://doi.org/10.1007/s10751-024-01849-6
Kishore, A., Varughese, A. M., Roth, B., & Zeilinger, C. (2024). A miniaturized test for stress biomarker detection by quantum dots on microarrays. In G. L. Cote, & J. S. Baba (Eds.), Optical Diagnostics and Sensing XXIV: Toward Point-of-Care Diagnostics Article 1285006 (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 12850). SPIE. https://doi.org/10.1117/12.3002242
Kishore, A., Varughese, A. M., Roth, B., & Zeilinger, C. (2024). Fabrication of a low-cost benchtop optical imager for quantum dot microarray-based stress biomarker detection. Biomedical optics express, 15(7), 4147-4161. https://doi.org/10.1364/BOE.527338
Klepzig, L. F., Keppler, N. C., Rudolph, D. A., Schaate, A., Behrens, P., & Lauth, J. (2024). Highly Transparent, Yet Photoluminescent: 2D CdSe/CdS Nanoplatelet-Zeolitic Imidazolate Framework Composites Sensitive to Gas Adsorption. SMALL, 20(18), Article 2309533. https://doi.org/10.1002/smll.202309533
Knoke, T., Kinnewig, S., Beuchler, S., & Wick, T. (2024). Neural Network Interface Condition Approximation in a Domain Decomposition Method Applied to Maxwell’s Equations. In Z. Dostal, T. Kozubek, A. Klawonn, L. F. Pavarino, O. B. Widlund, U. Langer, & J. Sístek (Eds.), Domain Decomposition Methods in Science and Engineering XXVII (pp. 271-278). (Lecture Notes in Computational Science and Engineering; Vol. 149). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-50769-4_32